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I.1 Introduction (Chapter 1)

- is there a theory of statistical reasoning that is recognized as the core of
the subject?

No

- does that matter?
Yes

- Why does it matter?

Without a core there is no subject but rather a collection of
"methods" (and opinions) and this doesn�t inspire con�dence.

- statistical reasoning is intrinsic to many branches of science and it is our
job to provide users with a logically sound approach

- if we don�t ....
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- various theories or approaches have been proposed and are used

- sometimes (as we will see) di¤erent theories can lead to diametrically
opposed conclusions to a given statistical problem

- so one, or both, of these theories isn�t correct

- basic idea that I follow ("meaningful" to be clari�ed)

If a theory of statistical reasoning can be shown to behave
inappropriately in a meaningful statistical context or, if the
theory fails to provide a solution to a meaningful statistical
problem, then it must be modi�ed or discarded.

- is it possible that there is no theory that is based on simple ideas and
that leads to solutions that can be broadly accepted as based on correct
statistical reasoning?

I�m an optimist and will make a proposal as part of the course.
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- does "big data" allows us to avoid these issues?

Certainly you can have so much data that statistical reasoning
becomes irrelevant (e.g. e¤ectively a census has been carried
out) but in general the answer is no as the same issues arise due
to uncertainty.

- so the course is about the foundations of statistical reasoning

- we will look at the various theories that have been proposed and see
where the problems lie

The central thesis here is that any such theory must be based on
a clear prescription of what we mean by statistical evidence and
it is the failure of most theories to do this in a satisfactory way
that leads to current problems.
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I.2 Statistical Problems

- in a scienti�c context there are questions concerning an object of interest
Ψ and data x has been collected believed to contain evidence concerning
the answers

E estimation - provide an estimate ψ(x) of Ψ together with an
assessment of its accuracy based on the evidence

H hypothesis assessment - quote the evidence in favor of or against
some speci�ed value ψ0 of Ψ together with an assessment of the
strength of the evidence

- what is the basic context where such problems arise and that are
statistical in character?

Example (the Archetypal Example)

- Ω = a population (�nite)

- X : Ω ! X a measurement

- so X (ω) 2 X is the value of the measurement for population member ω
and this measurement is always taken to some �nite accuracy
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- this gives rise to the distribution of X over Ω, namely, for x 2 X

fX (x) =
#(fω : X (ω) = xg)

#(Ω)
= the proportion of members of Ω

with measurement value x

and Ψ can be expressed as some aspect of fX

- in principle fX can be known, as well as Ψ, by counting if we do a census

- in general we can�t carry out a census

- for example, suppose Ω = students at U of T and X (ω) = ht in cm, so
X is a �nite set of rational numbers, fX gives the distribution of ht over Ω
and suppose Ψ = (1st quartile, median, 3rd quartile) and, even with a
census, we can only know these quantities to the nearest cm
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- for example, suppose, X = (X1,X2) = (blood type, blood pressure at
rest in mm Hg) and we want to know if X1 and X2 are related and, if so,
how they are related

- de�ne the conditional distributions X1 jX2

fX1 jX2(x1 j x2) =
#(fω : X1(ω) = x1,X2(ω) = x2g)

#(fω : X2(ω) = x2g)
= the proportion of the members of Ω having

X2 measurement x2 who have X1 measurement x1

- so Ψ is the collection of all these conditional distributions as then X1 and
X2 are related if fX1 jX2(� j x2) (meaningfully) changes as x2 changes and
the form of the relationship is how these distributions change

- the data x = (x1, . . . , xn) = (X (ω1), . . . ,X (ωn)) for some
fω1, . . . ,ωng � Ω
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- how to select fω1, . . . ,ωng? "randomly" and through design

- then the distributions become probability distributions and, if the
predictor is controlled, relationships become causative

note - we will always assume here that the data has been collected
correctly even though in applications it seems it often isn�t

- when the data isn�t collected properly a caveat such as "the inferences
may not apply to the population of interest Ω" is required

- in building a theory we will restrict to the ideal circumstances

note - everything is �nite as measurements are bounded and made to a
�nite accuracy

- what about in�nity?

Example
- suppose #(Ω) is big and X is real-valued taking many distinct values

- let f be a probability density function that satis�es, for each A � X ,Z
A
f (x) dx � ∑

x2A
fX (x)
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- so we are using in�nite objects to approximate something that is �nite

- so it is �ne to take X to be an in�nite set and use continuous probability
distributions just don�t forget that you are approximating something that
is �nite and don�t treat the in�nite object as the truth

Example Fisher�s counterexample to Bayesian inference
- suppose X (ω) = 1 if ω is male and is 0 otherwise

- let θ denote the proportion of males in Ω, so
θ 2 f0, 1/#(Ω), 2/#(Ω), . . . , 1g
- suppose we know nothing more about θ and so a uniform prior is placed
on θ so 1/(#(Ω) + 1) = prior prob. of θ being the true value for each
possible value

- if #(Ω) is large it makes sense to approximate this by a continuous
uniform density π(θ) = 1 for θ 2 [0, 1] (the points are equispaced across
[0, 1])
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- but now suppose instead we want to make inference about
ψ = Ψ(θ) = θ2 2 [0, 1] a 1-1 function of θ

- ψ has prior density (change of variable) πΨ(ψ) = 1/2ψ1/2 a
beta(1/2, 1) density and this is far from uniform

- but if our beliefs were uniform about θ shouldn�t these also be uniform
on ψ?

- Fisher�s conclusion was that because πΨ is not uniform, then this implies
that priors are "rubbish"

- but remember that θ 2 f0, 1/#(Ω), 2/#(Ω), . . . , 1g which implies
ψ 2 f0, (1/#(Ω))2, (2/#(Ω))2, . . . , 1g and these points are not
equispaced across [0, 1] (pts to the left of 1/2 are closer together and
points to the right are further apart and all are compressed towards 0)

- what continuous distribution best approximates a discrete uniform
distribution on f0, (1/#(Ω))2, (2/#(Ω))2, . . . , 1g? πΨ

Michael Evans University of Toronto http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html ()The Measurement of Statistical Evidence Lecture 1 - part 1 2021 10 / 12



- note too, that if we randomly sample (without replacement)
fω1, . . . ,ωng, then it is reasonable to "approximate" the distribution of
∑n
i=1 X (ωi ) as a binomial(n, θ) at least when n << #(Ω) and θ isn�t too

small or too large

Example Measurement models

- a "continuous" measurement X with true value Ψ

- often this will be presented as X = Ψ+ e where e is an error term
following a continuous prob. distribution f and repeated measurements
x1, . . . , xn are made

- recall, X is measured to �nite accuracy and it is bounded, so Ψ can only
be known to that accuracy and the possible values for Ψ are �nite

- further to be statistically meaningful, constraints must be assumed on f ,
e.g., if Ψ is the mean of X then f has mean 0

- mathematically, the idea is that, with in�nitely many measurements, the
distribution of X has density fX (x) = f (x �Ψ)
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- there is always an upper bound N on the number of observations that
could possibly be taken

- so we can imagine a population Ω of N measurements and if n << N it
is reasonable to assume the measurements taken are independent and
approximate the distribution of X by a continuous one provided X has
many distinct values

- this situation isn�t as realistic (is it real? where is the "randomness"
coming from?) as the archetypal example where everything can be known
via counting and where there are simple mechanisms to ensure
"randomness" (to be discussed)
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